Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation
نویسندگان
چکیده
Recent work has shown that NMR structures can be determined by integrating sparse NMR data with structure prediction methods such as Rosetta. The experimental data serve to guide the search for the lowest energy state towards the deep minimum at the native state which is frequently missed in Rosetta de novo structure calculations. However, as the protein size increases, sampling again becomes limiting; for example, the standard Rosetta protocol involving Monte Carlo fragment insertion starting from an extended chain fails to converge for proteins over 150 amino acids even with guidance from chemical shifts (CS-Rosetta) and other NMR data. The primary limitation of this protocol--that every folding trajectory is completely independent of every other--was recently overcome with the development of a new approach involving resolution-adapted structural recombination (RASREC). Here we describe the RASREC approach in detail and compare it to standard CS-Rosetta. We show that the improved sampling of RASREC is essential in obtaining accurate structures over a benchmark set of 11 proteins in the 15-25 kDa size range using chemical shifts, backbone RDCs and HN-HN NOE data; in a number of cases the improved sampling methodology makes a larger contribution than incorporation of additional experimental data. Experimental data are invaluable for guiding sampling to the vicinity of the global energy minimum, but for larger proteins, the standard Rosetta fold-from-extended-chain protocol does not converge on the native minimum even with experimental data and the more powerful RASREC approach is necessary to converge to accurate solutions.
منابع مشابه
Protein structure prediction guided by crosslinking restraints – A systematic evaluation of the impact of the crosslinking spacer length
Recent development of high-resolution mass spectrometry (MS) instruments enables chemical crosslinking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein–protein docking. However, one formidable question is under which circumstances XL-MS data migh...
متن کاملCombining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction
Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of...
متن کاملProtein structure prediction guided by crosslinking restraints--A systematic evaluation of the impact of the crosslinking spacer length.
Recent development of high-resolution mass spectrometry (MS) instruments enables chemical crosslinking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein-protein docking. However, one formidable question is under which circumstances XL-MS data migh...
متن کاملImproved reliability, accuracy and quality in automated NMR structure calculation with ARIA
In biological NMR, assignment of NOE cross-peaks and calculation of atomic conformations are critical steps in the determination of reliable high-resolution structures. ARIA is an automated approach that performs NOE assignment and structure calculation in a concomitant manner in an iterative procedure. The log-harmonic shape for distance restraint potential and the Bayesian weighting of distan...
متن کاملEnergy landscapes of a hairpin peptide including NMR chemical shift restraints.
Methods recently introduced to improve the efficiency of protein structure prediction simulations by adding a restraint potential to a molecular mechanics force field introduce additional input parameters that can affect the performance. Here we investigate the changes in the energy landscape as the relative weight of the two contributions, force field and restraint potential, is systematically...
متن کامل